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Abstract

The paper describes the aeroelastic analysis of a tiltrotor con�guration. The 1/5 scale wind tunnel
semispan model of the V-22 tiltrotor aircraft is considered. The analysis is performed by means of a
multi-body code, based on an original formulation. The di�erential equilibrium problem is stated in
terms of �rst order di�erential equations. The equilibrium equations of every rigid body are written,
together with the de�nitions of the momenta. The bodies are connected by kinematic constraints,
applied in form of Lagrangian multipliers. Deformable components are mainly modelled by means
of beam elements, based on an original �nite volume formulation. Multidisciplinar problems can
be solved by adding user-de�ned di�erential equations. In the presented analysis the equations
related to the control of the swash-plate of the model are considered. Advantages of a multi-body
aeroelastic code over existing comprehensive rotorcraft codes include the exact modelling of the
kinematics of the hub, the detailed modelling of the 
exibility of critical hub components, and the
possibility to simulate steady 
ight conditions as well as wind-up and maneuvers. The simulations
described in the paper include: 1) the analysis of the aeroelastic stability, with particular regard to
the proprotor/pylon instability that is peculiar to tiltrotors, 2) the determination of the dynamic
behavior of the system and of the loads due to typical maneuvers, with particular regard to the
conversion from helicopter to airplane mode, and 3) the stress evaluation in critical components,
such as the pitch links and the conversion downstop spring.
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Introduction

The 1/5-scale aeroelastic model of the V-22 (Figure 1) was built and tested in the period from 1983
to 1988, to support the preliminary design and the full scale development of the tiltrotor aircraft
later known as the JVX. The wind tunnel tests began at the Transonic Dynamic Tunnel (TDT)
of the NASA Langley Research Center (LaRC) on a semispan model, and were globally performed
in three di�erent facilities, including the Boeing Helicopter VSTOL tunnel for both the semispan
and the full span model con�gurations. The semispan model is currently referred to as the Wing
Rotor Aeroelastic Testing System (WRATS), and is located at the LaRC.
The design of a complex system as a tilting rotor aircraft requires sophisticated analyses, with dif-
ferent levels of approximation, as the design process matures from the preliminary, to the detailed
analysis, up to the full scale development phase. Traditionally, rotors and rotor components are
analysed with dedicated tools. Transfer matrix (a.k.a. Myklestad), FEA (NASTRAN, CAMRAD
[11], [12], UMARC [14], DYMORE [1]) can be used for structural and modal analysis of the isolated
blade; dedicated codes, based on simpli�ed or imposed rotor kinematics, and relying on FEA for
the modal characterisation of the 
exibility of the rotor, can be used to �nd trimmed solutions of
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the dynamics of the rotor. The family of codes that follow this philosophy is broad, and many of
them have reached a high level of re�nement and, expecially those developed in-house by helicopter
companies, are successfully used in the design of commercial rotorcrafts (PASTA [15], DYN4-DYN5
[23]). One further step towards generality is represented by comprehensive codes, that allow a more
re�ned modelling of the kinematics as well as of the 
exibility of the system, but with some sim-
pli�cations, usually represented by assuming that the rotation speed is constant and the motion
is periodic, leading to the direct solution of the trim problem (CAMRAD, UMARC), an iterative
solution being usually required only when a wake model is used (CAMRAD, UMARC, CAMRAD
II [13]). A unifying tool, able to cover such a wide spectrum of applications, is represented by a
general purpose modelling code, based on a multi-body multidisciplinary approach, that gives the
analyst modelling capabilities ranging over every design step without any undue simpli�cation.
Within this framework, one can progress from rigid body models, for preliminary performance
de�nition, to fully detailed aero-servoelastic analyses, through intermediate steps, encompassing
detailed mechanism de�nition, introduction of deformable elements, actuators, and control system
components. This approach is likely to need more computer power than that required by spe-
cialised and simpli�ed approaches, but pays back in terms of e�ciency since it allows the designer
to avoid risky physical oversimpli�cations along with the greater modelling con�dence allowed by
using a single, general purpose, and well proven modelling tool. Moreover, with the computer
power nowadays available, even the most complex models are likely to require a turnaround time
that is compatible with an extensive set of parametric analyses and, within not so long a time,
even with a complete system optimisation. Unfortunately, current commercial general purpose
multi-body analysis codes, e.g. DADS [9], MECANO [3], ADAMS and others [25], still pose some
limitations to the modelling of rotorcrafts, mainly due to insu�cient aerodynamics, insu�cient
description of 
exible bodies, and in some cases to limitations in the integration algorithms when
applied to large �nite rotations of the order of some revolutions [17].
The numerical simulations have been performed by means of an original multi-body formulation,
which resulted in a code, MBDyn, that is still under development. It is intended for the simul-
taneous solution of multi-disciplinar problems including non-linear dynamics, aero-servoelasticity,
smart piezo-structural components, electric and hydraulic components. It allows the modelling of
complex systems, a clear example of which is the proposed aeroservoelastic model of a tiltrotor
aircraft.
The multi-body formulation is presented �rst. The analytical treatment of the dynamics of rigid
bodies, the handling of �nite rotations, and the �nite volume beam formulation are described,
as well as some of the features of the multi-body code. Then the tiltrotor analytical model is
described. The single components are detailed, and the steps of the build-up of the complete
model are outlined. Results of intermediate analyses are presented, involving the kinematic and
elastic characterisation of the hub and the modal analysis of the subparts. Finally some aeroelastic
results, as well as the simulation of some typical maneuvres are presented.

Multi-Body Formulation

Dynamics. The multi-body problem is formulated by directly writing the core equations for each
unknown (structural, electric, hydraulic, . . . ). Constraints are imposed by means of appropriate
equations, with \reacting forces" as unknowns, in a way that resembles the Lagrangian Multipliers
method. It should be stressed that the reaction unkowns really are the reaction forces and not
abstract multipliers. This solution has been preferred to a possible generalised variational approach,
to simplify the writing of the equations and thus to reduce the computational burden. Moreover,
a variational formulation for non-conservative loads and constraints, and for arbitrary elements
in general, like those related to the previously mentioned non-structural elements, would have
been too cumbersome. For computational e�ciency and simplicity of formulation, the dynamics
problem has been stated as a �rst order di�erential system of equations; the equilibrium equations
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of a body are: �
_q � F (x; _x;R; !; : : : ; t) = 0
_
 � (! � S)� _x�M (x; _x;R; !; : : : ; t) = 0

where q, 
 are the momenta, x is the position of the node, R is the rotation matrix that describes
the rigid rotation from the local to the global frame, ! is the angular velocity of the node, that is
related to the rotation matrix by the relation !� = _RRT 2. The inertial forces and moments balance
in a d'Alembert sense the forces F and moments M , which may depend on the con�guration (i.e.
on the kinematic unknowns, to give elastic forces) as well as on other parameters (like the time
t). The term (! � S) � _x in the moment equation is required since moments are referred to the
position of the node, that is variable. The de�nitions of the momenta must be added, as follows:�

m _x+ S � ! � q = 0
�S � _x+ J! � 
 = 0

The mass of the body is m; the inertial properties S, J represent the �rst and second order inertia
moments of the body and are referred to the global frame. Their transformation from the local
to the global frame is given by S = R ~S, J = R ~JRT . The physical momenta have been chosen
as unknowns to let di�erent elements with mass contribute to the inertia of a node. Kinematic
constraints are added as constraint equations � (x; _x;R; !; : : : ; t) = 0. The unknown constraint
reactions VF , VM then contribute to the equilibrium equations as Lagrange multipliers. The system
is summarised as follows, in a form known as Lagrangian of the �rst kind:8>>>><

>>>>:

m _x+ S � ! � q = 0
�S � _x+ J! � 
 = 0
_q + VF � F (x; _x;R; !; : : : ; t) = 0
_
 � (! � S)� _x+ VM �M (x; _x;R; !; : : : ; t) = 0
� (x; _x;R; !; : : : ; t) = 0

The handling of the rotation matrix R is detailed in the following section and in Appendix A; it will
be expressed in terms of (arbitrary) rotation parameters g. Equations � represent holonomic and
non-holonomic constraints. In general these equations are algebraic or mixed di�erential-algebraic
for holonomic and non-holonomic constraints respectively, and thus the system of equations is
Di�erential Algebraic (DAE) of index three [2]. It is important to remark that the system is solved
\as is", in the unknowns x, g, q, 
, VF , VM without any further substitution. Initial satisfaction of
the constraint equations is ensured by properly assembling the joint elements in a system in which
virtual springs link the nodes to their assigned positions, and then iterating until a compatible
solution is obtained. This allows a great 
exibility, since the initial (given) con�guration may be
non-compatible. Eventually the system is trimmed in a con�guration that satis�es equilibrium by
solving it at the initial time, with a modi�ed update procedure that preserves the con�guration and
modi�es only the momenta and the reaction unknowns. In this way initial equilibrium can be com-
puted without di�erentiating the constraint equations up to the second order. Finally the solution
is improved by iterating the so called \�ctitious steps", that are normal solution steps performed
at a very small time step and with high numerical damping, followed by a single-step restart of the
computation. The �ctitious steps implicitly perform a sort of numerical di�erentiation of the con-
straint equations without resorting to any speci�c procedure. General elements, called Genel, are
provided to account for user-de�ned generic components. They introduce user-de�ned unknowns
a, called abstract degrees of freedom, that can interact with standard pre-existing unknowns. As
a result, forces and moments may depend on abstract unknowns too, and Genel equations are
added to the system in the form:�

F;M = F;M (x; _x;R; !; a; _a; : : : ; t)
G (x; _x;R; !; a; _a; : : : ; t) = 0

They are used in the preliminary development phase, to allow a high degree of 
exibility in writing
the formulation and the code; when a reasonable standardisation is reached, they are merged

2Operator (�)� allows to write the vector product in matrix notation, i.e. being a a vector, a� is the matrix
that multiplies vector b to give a� b
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in a separate family of elements. The system is being extended to the integrated simultaneous
solution of multi-�eld problems; the active control of smart structures has been already addressed
in [5] by adding electric variables and sensors, actuators and signal processing elements. Further
development will involve the reinclusion of modal coordinates, and the modelling of hydraulic
circuits and elements, to simulate the control system of a complete rotorcraft.
Kinematics. The formulation of the multi-body problem is based on the kinematic description
of large displacements and rotations. For an accurate but e�cient, i.e. fast and cheap, solution,
an appropriate formulation for the rotations is fundamental. In this work, the total position of
each body is used as unknown. The choice of the rotation unknowns pose a delicate problem.
The orientation of a local frame is described by an orthogonal matrix R that maps vectors from
the local to the global frame. The parametrisation of large rigid rotations requires at least three
unknowns, but four parameters are needed to avoid singularities that arise when the orientation of
the rotation is unde�ned. This problem has been prevented by considering incremental rotations as
unknowns. So the current orientation of a reference frame R is accounted for by a constant rotation
matrix Rr, that multiplies an unknown incremental rotation, held by matrix R�, that is assumed
to be small enough to avoid any singularity. Matrix Rr is updated after every step. A widely used
three parameter parametrisation is represented by the rotational vector ', that describes a �nite
rotation of amplitude given by its modulus, about an axis represented by the vector itself. A very
e�cient parametrisation of the �nite rotations has been found in the Gibbs-Rodriguez parameters
g = 2 tan�1 ('=2), modi�ed with respect to the conventional notation by means of the factor 2.
This makes the linearised expressions of the rotational entities concide with those of the rotational
vector '. The rotation matrix R is:

R = I +
4

4 + gT g

�
g �+

1

2
g � g�

�

Gibbs-Rodriguez parameters do not use trigonometric functions, that are computationally expen-
sive. Some useful properties of the rotation matrix, and its di�erentiation rules, are reported in
Appendix A.
Integrator. Time integration is performed by means of an implicit, A/L-stable, second order
accurate, predictor-corrector integrator. The basic formulas are:

_yk = �

12

h
(yk�1 � yk�2) + 8 _yk�1 + 5 _yk�2

yk = (1� �) yk�1 + �yk�2

+ h

�
� +

1

2

�
_yk + h

�
1

2
� +

1

2
� 2�

�
_yk�1 + h

�
1

2
� + �

�
_yk�2

for the predictor, consisting in the cubic extrapolation of the derivatives based on the states
and their derivatives at the two preceding steps, and the prediction of the state based on an
extrapolation, the coe�cients of which ensure second order accuracy, with user-de�ned control of
the numerical damping; h is the time step. The formulas have been generalised to a variable step
predictor; in this work, for sake of simplicity, only constant time step formulas are described. The
coe�cients � and � can be expressed in terms of the desired asymptotic spectral radius �1, under
the assumption of real and coincident asymptotic roots (best �t criterium):

� =
4�2
1
� (1� �1)2

4� (1� �1)
2

� =
(1� �1)2

2
�
4� (1� �1)

2
�

For �1 = 1 the method is very similar to the Crank-Nicholson rule (no dissipation), though
using two steps, while for �1 = 0 the method coincides with the well known Backward Di�erence
Formulas (BDF) [2]. The correction is performed by means of a complete/modi�ed Newton-
Raphson iteration.
Rotations Updating. The correction is made referring to the predicted reference (this technique
has been called updated-updated). The predicted frame is used as reference, so it is constant; only
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the rotation related to the correction is unknown. As a consequence, the unknown rotation becomes
really small, provided the prediction is accurate. The angular velocity can be expressed as:

! = G� _g� +R�!r

where subscripts (�)
�

mean that the rotation parameters and their derivatives are referred only
to the correction rotation. As a consequence, when the prediction is accurate, the terms involved
in the linearisations can be approximated as: G� �= I , R� �= I , �G� �= 0. The di�erentiations
become:

�R �= �g� �Rr; �! �= �_g� +�g� � !r

this greatly simpli�es the writing of the Jacobian matrix, with consequent savings in computa-
tional time. Accuracy is preserved by consistently calculating the residual. This approach can
be regarded as an \intrinsically modi�ed" Newton-Raphson solution, since the Jacobian matrix is
approximated during the construction, and thus acts as a sort of very well suited preconditioner.
Constraints. Many constraints can be formulated. The most commonly used have already been
implemented, to allow the modelling of common mechanisms. Table 1 lists the available elements.

Most of them are based on the orthogonality condition of two vectors, namely eia
T
e
j

b = 0, where
the subscripts refer to the bodies the vectors belong to, and the superscripts refer to the directions
in the local reference frame. In Appendix B, the linearisation of basic constraints is described.
Beams. Beams represent a fundamental elastic element in the proposed multi-body implemen-
tation. The kinematic description of the generalised deformations, i.e. strains and curvatures, is
based on an intrinsic formulation of the beam. The strains are de�ned as the di�erence between
the current and the initial derivatives of the reference line p (�) that describes the position of the
beam. The strains, referred to the material frame, are:

~" = R0R
T p0

� p0

0

where the position p refers to the current frame, while p0 refers to the initial con�guration of the
beam, the prime (�)

0

performs a spatial derivative, and R0 is the rotation matrix at point � in the
initial con�guration. The linearisation of the strains results in:

�~" �= R0R
T
r (�p0 + p0

��g�)

The geometric curvature ~� is de�ned as the spatial derivative of the reference frame of the beam
section:

~�� = RTR0

The di�erence between the current and the initial, or imposed, curvature �0, represents the elastic
curvature ~�, expressed in the material frame:

~�� = RTR0
�RT

0 R
0

0 = ~����0�

When incremental rotations are considered, the elastic curvature becomes:

~� = R0
�
RTGg0 +RT

r �r
�

After linearisation:
�~� �= R0R

T
r �g

0

�

The internal forces are de�ned by means of a constitutive law in terms of generalised strains, i.e.
# = # ( ) where # are the internal forces and moments and  are the strains and the curvatures.
An original �nite volume approach is used to formulate the beam elements. A linear elastic
constitutive law is usually considered, but, without any loss in generality, an arbitrary constitutive
law can be considered as well, since the �nite volumes formulation deals with collocated internal
forces only, irrespective of their nature. Finite volumes applied to the equilibrium of a beam can
be interpreted, in physical terms, as the direct balance of the forces that act on a �nite piece of
beam. The equilibrium equation of a �nite piece of beam is:

(I � Ub)#b � (I � Ua)#a = F
b
a
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where a and b label the ends of the piece of beam, Fb
a are the resulting dead forces and moments ap-

plied in the interval [a; b], and matrix U represents the arm of the internal forces in the equilibrium
equation of the moments:

U (�) =

�
0 0

� (p (�)� x)� 0

�

being x the pole the moments are referred to. A three node parabolic C0 element has been
implemented; it gives the exact solution for end-applied loads [18], [6]. The inertia of the beam
is accounted for in a lumped scheme. Consistent inertia forces have been formulated, and their
implementation in the linearized case showed higher accuracy in modelling the dynamics of a
coarse beam model, but at a higher computational cost [6]. The �nite volume beam can be
regarded as a constraint that relates the reaction forces to the deformation of the link, and thus
to the con�guration of the system. Provided the relation between reactions and con�guration
is invertible (i.e. the Hessian of the strain energy is positive de�nite), the constraint equation
can be implicitly solved, thus allowing the direct writing of the contribution of the beam to the
equilibrium equations in terms of position and rotation unknowns. The loss in symmetry of the
linearised matrices of the �nite volumes beam is not a drawback in the context of a multi-body
formulation, since the problems at hand already are non-symmetric. Finite volume beams are easy
to implement in a multi-body formulation since only collocated evaluation of contributions to the
equilibrium equations is required. Moreover, they straightforwardly resemble the natural partition
in distinct bodies that is peculiar to the multi-body formulation. The �nite volume description of
the deformation of slender bodies is consistent with the mathematical, intrinsically discrete, multi-
body model, and thus allows an easy but thorough modelling, especially when used in conjunction
with specialised beam section analysis and characterisation formulations, like those described in
[7] and [4].
Aerodynamic Forces. The aerodynamic forces are based on the strip theory, using elements
that refer to rigid or beam shaped aerodynamic surfaces. The aerodynamic coe�cients are based
on the interpolation of experimental data spanning 360 degrees of angle of attack. Corrections
are made to determine the drag due to spanwise 
ow, as well as the e�ects of dynamic stall
[8]. Quasi-steady aerodynamics coe�cients can be considered as an alternative approach. Rotor
elements are de�ned, to account for the e�ect of rotor induced velocity with an increasing degree
of re�nement, from uniform up to Glauert and Mangler in
ow distribution in hover and in forward

ight, respectively. Dynamic in
ow modelling can also be used [22]. The previous version of the
code was interfaced to an aerodynamic code that models the wake of a rotor. An upgrade for the
current version has been planned.

Tiltrotor Models

A tiltrotor aircraft is a complex system that has the behaviour of both a conventional airplane and
of a rotorcraft, with peculiar maneuvres, e.g. the conversion. Its aerodynamics are characterised
by the high in
uence of the rotor on the airstream that a�ects the wing, in both helicopter and
airplane con�guration. In fact the WRATS project has been mainly focused on the reduction of the
vibration level induced by these interactions in the airplane mode by means of an actively controlled
swashplate with the Higher Harmonic Control (HHC) technique, coupled to an active 
ap [20]. The
blades of the rotor represent a compromise between helicopter and propeller blades. Since they are
optimised for the high axial airstream speed typical of the airplane mode, they are highly twisted,
thus showing high elastic couplings between twist and in- and out-of-plane bending [19]. The
conversion maneuvre, when performed at typical rates for aircraft control, introduces gyroscopic
e�ects that are unusual in conventional helicopters. The 
exibility of the wing can magnify the
e�ects of ground and air resonances, the latter being typical of automatically controlled rotorcrafts.
Many of these problems are well known, but have never been faced to this extent, while others
are completely new. For this reason, a particularly intensive experimental campaign preceeded
and accompanied the whole development of the JVX [16], supported by numerical analyses of
the related subproblems. Eigenvalue analyses of the rotor dynamics, the determination of 
utter
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margins of the rotor, of the wing and of the ensemble, by means of analytical models based
on comprehensive rotorcraft analysis codes, and dynamic simulations of the rotor mechanisms by
means of early multi-body codes have been performed at each step of the wind tunnel investigations
[23], [24]. Most of these analyses were performed by means of comprehensive rotorcraft codes, with
properly simpli�ed models. In this paper a di�erent approach is proposed, consisting in the use
of a single, state-of-the-art, multipurpose multi-body code that is able to perform most of the
required simulations starting from a single bulk model that can be specialised for each analysis.
Each subpart of the tiltrotor is modelled and analysed in its basic kinematic and dynamic features,
then the parts are assembled together and the system is analysed as a whole. By using the same
code and the same modelling for the single parts and the assembly, and by using a rather general
approach in the kinematic and mechanical description of the single parts, any undue approximation
is avoided. The tiltrotor has been split in the following subsystems:

1. The blade, made up of a 
exbeam, a pitch hinge and a pitch link. Either rigid or 
exible
blades have been considered.

2. The gimbal, a constant velocity joint made up of its components in order to give an accurate
kinematic description of the joint.

3. The swash plate, made of the two plates, the two scissors that constrain the axial rotation
of the plates with respect to the pylon and to the hub, and the three non-rotating links that
control the collective and the cyclic position of the plates.

4. The half-wing model, made of the deformable wing, the pylon, modelled as a rigid body, the
conversion hinge, the downstop spring and the mast.

The complete model is sketched in Figure 2.
Blade. The single blade model has been used to analyse the dynamic properties of the iso-

lated blade, such as frequencies and aerodynamic properties. Three di�erent models have been
considered, with increasing discretisation re�nement. All the models share the description of the

exbeam, that uses a three-node beam element, and of the controls. The blade is joined to the

exbeam by a spherical hinge at the outer end, and by a spanwise oriented in-line joint, 2.2 in.
outwards of the rotor axis. The bending of the 
exbeam accounts for 
exible 
ap and lag motion,
while the pitch rotation is allowed by the bearings. A distance joint between the rotating swash-
plate and an o�set point aft of every blade cu� models the control link. It can be both rigid or

exible, to account for the 
exibility of the control system. A rigid blade has been considered �rst,
which proved to be poor because the yoke is very sti�, so even the very �rst in-plane bending mode
implies appreciable deformation of the blade itself. On the other hand, the rigid blade represents
an acceptable tradeo� when the performances of the rotor are addressed. A 
exible blade has been
subsequently modelled, with two and four beam elements respectively. The �rst frequencies of the
cantilevered blade obtained by MBDyn are reported in Table 2, compared to Ground Vibration
Tests (GVT), UMARC and NASTRAN Finite Element Analysis codes results.

Gimbal. The gimbal model has been used to determine the kinematic and gyroscopic properties
of the rotor. It consists in a constant velocity joint, made by two universal joints, linked to the mast
and to the hub respectively at one arm of each cross. The other arm of the crosses is connected to
a linkage, that transmits the torque between the mast and the hub and keeps constant the distance
between the two U-joints. The hub is also linked, by means of an in-line joint, to a spherical joint
on the mast that allows the gimbal motion. The gimbal allows the rigid 
apping of the whole
rotor and, since the direction of the angular velocity tilts together with the hub, no Coriolis forces
due to this motion result in the blades when the 
apping is steady. At the same time, the 1 per
rev. 
apping motion has no sti�ness due to centrifugal e�ects, but only that provided by a set of
springs.

Swash Plate. The swash plate model has been used to analyse the kinematics of the control
system and, together with the gimbal and the rigid blade, to evaluate the pitch-
ap-lag couplings
for the whole collective pitch range. It has been used also to apply the desired controls to the
rotor during dynamic simulations. It consists in the two plates, modelled as rigid bodies joined by
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a plane hinge. The �xed plate is linked to the pylon by means of an in-line joint that forces it to
translate along the mast. A �xed and a rotating scissor constrain the rotation of the two plates
about the rotor axis, with respect to the pylon and the mast. Three variable distance joints are
used to control its translation (collective pitch) and attitude (cyclic pitch). The elongation of the
�xed control links is imposed by means of a dedicated general purpose element that splits the three
fundamental control inputs, namely collective, and fore/aft and lateral cyclic pitch angles, into the
elongations of the links. Figures 3{5 respectively represent the kinematic pitch-
ap coupling due
to the gimbal and the 
exible 
apping, and the control sti�ness as function of the collective pitch,
compared to data obtained from Bell Helicopter and model calibrations.

Wing-Pylon. The half wing model has been used for aeroelastic clearance of the isolated
wing. Both dynamic and aeroelastic properties of the wing in forward 
ight have been analysed.
It consists in two beam elements for the wing, and in the pylon, modelled with a rigid body. The
pylon is connected to the wing by means of a 
exible spindle, modelled with a beam element, and
a downstop spring. The spindle models the conversion bearing. Its bending allows the pylon to
rotate with respect to the wing about the roll and yaw axes. The conversion actuator constrains
this rotation, and controls the conversion angle. In the wind tunnel model, springs with di�erent
properties are used to simulate the behavior of the conversion actuator in helicopter and airplane
con�guration, both on- and o�-downstop. The main frequencies of the wing-pylon are reported in
Table 7, compared to both GVT and NASTRAN results.

Some preliminary considerations on the 
apping motion: the rotation center for the 
apping
due to the gimbal, namely 1 per rev. 
apping, is located on the rotation axis, 2 in. above the
rotor plane, while the one for the 
apping due to the 
exbeam deformation, namely the cone
and >1 per rev. 
apping, lies about 1.5 in. outboard along the blade axis. The pitch control is
linked to the blade 75o aft of the blade itself and thus introduces a pitch-
ap coupling �3 �= �15

o

that is negative (
ap up causes pitch up) for the 1 per rev. motion, and slightly positive for the

exible 
apping. It is known, [10], that, for a sti�-in-plane rotor, a positive �3 can give raise to a
pitch-
ap aeroelastic instability when the �rst out-of-plane and in-plane frequencies nearly meet.
The occurrence of this instability in the simulations required a deeper analysis of the 
exibility
of the yoke. In detail, the 
exibility of the inner part of the yoke, from the hub to the inner
pitch bearing, proved to be fundamental in describing the correct coupling between the blade pitch
and the 
exible, symmetric 
apping motion. After this part was properly modelled, the slight,
symmetric instability in the analytical model disappeared. Figure 4 shows the change in pitch-
ap
coupling for the cone 
apping motion both for rigid and 
exible root of the 
exbeam.

Rotor Models. The model, consisting in the rotor with rigid/deformable blades, the gimbal
and the swashplate, has been used to investigate the stability of the rotor, with particular regard
to the pitch-
ap-lag coupling, and to evaluate the aerodynamic response to the controls. The
rigid blade model matched the out-of-plane frequencies, but gave poor results for the in-plane
frequencies, so it was of little use in other than performance analyses. The 
exible blade models
agreed very well with available data for the low frequencies of the rotor, both in the rotating and
non-rotating cases in vacuo. Both the single blade and the complete, three blade rotor models have
been analysed. For this purpose, UMARC has been modi�ed to allow the modelling of multiple
blade rotors in the �nite elements analysis module, with multiple load paths to account for the
control links. Tables 3 and 4 show that the presence of the gimballed hub modi�es the natural
frequencies of the system by breaking the symmetry. In fact, non-symmetric modes are found,
as shown both by the analysis and the experiment. Results from Bell Helicopters were available
for the locked gimbal case, since they were obtained for a single blade model. They refer to an
old con�guration of the hub, with calibrated springs at the blade root to simulate the sti�ness of
the controls. These results are not completely representative of the current con�guration. The
GVT results with locked gimbal are also not completely signi�cant, since the gimbal couldn't be
perfectly locked. As an example, in Tables 5 and 6, the rotating frequencies of the complete, three
blade rotor are reported at two typical rotating speeds and collective pitches, respectively referring
to hover and cruise 
ight conditions.

Wing Model. The wing model shows good correlation for the lowest modes, as reported in
Table 7. The results are compared to experimental measurements and to numerical results based
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on NASTRAN code [21]. The beam and torsion modes are strongly coupled and are in
uenced by
the properties of the downstop, the spring that is used to lock the conversion actuator in airplane
mode. At present there is no conversion actuator on the wind tunnel model, so it is simulated by
a set of springs that model its sti�ness in di�erent con�gurations.

Wing-Rotor Models. The previously mentioned models have been merged by mounting the
rotor models on the 
exible wing. In the rigid blade version, the complete model has been used to
evaluate the performances of the aircraft during maneuvres, an example of which is the conversion.
The deformable blade model has been used to test the stability of the elastically mounted rotor and
to assess the feasibility of the multi-body model for the simulation of the whole, detailed deformable
system. Moreover, the e�ects of the 
exibility of the blades on the dynamics of the system, in terms
of transmission of the higher harmonics of the rotor system to the body of the aircraft, have been
investigated. The �rst wing modes are not directly a�ected by the modelling of the 
exibility of the
rotor. The torsion mode of the wing is very close, and at some airstream speeds coincident, to the
rotor speed; this gives raise to resonance that can be seen in the frequency analyses of the internal
forces of the wing. Four wing modes are mainly considered: the beam, chord and torsion modes of
the wing, and the so called \pylon yaw" mode, a low frequency yaw oscillation of the pylon due to
the 
exibility of the conversion actuator. When considered in the �xed frame, the retreating rotor
modes interact with the wing modes. This can be clearly appreciated from a frequency analysis
of the wing response when the rotor modes are excited. Most of these modes cannot be easily
identi�ed when the aerodynamics are modelled, since they are highly damped. For this reason, a
comprehensive analysis of the structural properties of the model has been performed by simulating
in vacuo operations, while the aeroelastic properties have been estimated in di�erent ways. The
damping of the wing modes in forward 
ight has been estimated by system identi�cation of the
(damped) response to a given input, as is usually done during actual wind tunnel tests, while
the aeroelastic pitch-
ap coupling has been estimated by measuring the phase shift between an
harmonic control input and the 
apping response.

Figures 6, 7 refer to a collective pitch maneuvre. They show the internal moments at the wing
root and the geometric pitch of blade #1 as the collective control is raised from 0 to 10 degrees in
one second. The simulation is performed in helicopter mode; the nominal hover rotation speed of
888 rpm is reached in one second to obtain a trimmed condition (not shown). There is no airstream
speed. The di�erence between the given control and the actual pitch of the blade is due to the
deformation of the 
exbeam and of the 
exible link.

Figures 8, 9 refer to a 5 degrees fore/aft cyclic pitch maneuvre. As the rotor tilts forwards,
the high frequency in-plane modes of the wing are excited, as shown by the plot of the internal
moments. The oscillations in the pitch link are 1/rev., partially due to 1/rev. 
exbeam 
apping
that is superimposed to the gimbal 
apping (which implies no appreciable pitch link loads), that
is needed to counteract the gimbal springs.

Figure 10 refers to the conversion maneuvre performed by a deformable blade model. It shows
the internal forces at the wing root. The conversion is performed at a 10 deg/s constant angular
speed. Oscillations of the internal forces due to the untrimmed initial conditions are appreciably
damped as the maneuvre proceeds to the end, at 9 s. The following abrupt raise of the internal
forces is due to the transient caused by the end of the maneuvre.

The 
exible blade model has been used to simulate the response to a cosinusoidal vertical gust in
airplane mode, of 10 ft/s amplitude. Both the stability and the sensitivity of the tiltrotor have been
addressed. Figures 11, 12 show the wing out-of-plane internal moment due to the gust at di�erent
airstream speeds, for both o�- and on-downstop con�gurations. In �gure 11 the o�-downstop
con�guration is clearly approaching the stability boundary at 140 Kts. When the rotating speed is
increased, the stability boundary moves towards lower speeds, as shown by previous analyses and
experiments [23].

The deformable blade model has been used in the longest and most sophisticated performed
simulations, i.e. the complete conversion. The model is made of 45 nodes, 39 rigid bodies, 31
joints of di�erent kind, 18 beam elements, 14 aerodynamic elements for a total of 571 degrees of
freedom. Initially, the rigid blade model required �t = :5 � 10�3 s, while the deformable blade
model required �t = :25� 10�3 s to start correctly. When a variable time step was used, during
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the rigid blade model simulations it grew very quickly to 3:0 � 3:5 � 10�3 s, while, during the
deformable blade model ones, it reached about 1:0 � 1:2 � 10�3 s. The conversion simulation
required about 4.5 hours on a Pentium PRO 200 PC for a total of 40000 �xed size time steps (10 s
at �t = :25� 10�3 s). When performed with variable step size, it required about one hour. After
the model has been re�ned, and a soft start has been used, the 
exible blade model is able to start
with �t = 10�3 s, requiring 1.1 hours on a Pentium II 333 PC.

Concluding Remarks

An original formulation for the solution of the multi-body multidisciplinary modelling of a tiltrotor
has been presented. The formulation proved to be e�cient without excessive simpli�cations. E�-
ciency has been enhanced while maintaining the physical meaning of both the equations and the
unknowns. On the computational side, the redundancy of the formulation is exploited by a sparse
solver, while the updated-updated rotation approach both reduced the computational burden and
eased the writing of the jacobian matrix required by the nonlinear solver. Correctness is achieved
by avoiding any undue approximation in writing the kinematic relations and by properly calculat-
ing the residuals even in presence of computationally convenient approximations of the Jacobian
matrix. The use of an unconditionally stable method allows a time integration whose step is dic-
tated essentially by the desired accuracy. A model of the tiltrotor used in WRATS investigation has
been analysed, consisting in rotor models of increasing re�nement, with rigid and 
exible blades,
the gimballed constant velocity joint, the swashplate and the control links, the pylon, the conver-
sion hinge and the 
exible wing. Aerodynamic loads have been considered, to simulate di�erent
test conditions, from aeroelastic stability investigations to the simulation of complex manoeuvers,
including conversion and blade pitch control. The adopted approach represents an interesting way
to perform analyses of complex systems, of which the tiltrotor model is a clear example, and can
lead to a valid and thorough design tool. It is worth underlining that the results here presented are
meant to assess the validity of the formulation and of the code, rather than a complete analysis of
the WRATS tiltrotor model. The simulations have been performed on a Pentium Pro 200 and on
a Pentium II 333 PCs using Linux OS. In view of the proof-of-concept code perspective, the basic
problem solving engine is retained to be signi�cant a competitor with respect to corresponding
state-of-the-art commercial codes, but it lacks in the pre- and post-processing features of such
softwares. Since, even if substantially sound and robust, Linux compilers are not as e�ective as
proprietary compilers used on the most powerful available RISC workstations, it is expected that
signi�cantly better performances can be obtained in a real industrial design environment even
with the code \as is". Nonetheless enhancements are planned for the adaptive time step control
in the integration, for more e�ective iterative solvers and for a rough low cost coarse scale parallel
implementation on PCs using message passing paradigms.
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Appendix A: Finite Rotations

The di�erentiation of a vector v = R~v that is constant in a local frame is:

v0 = R0~v = R0RT v

where the orthogonality of matrix R has been exploited, that is, the scalar product of two vectors
does not depend on the reference frame: aT b � ~aT~b, from which follows that RTR = I . When
total Gibbs-Rodriguez rotation parameters g are used, the following expression holds:

R0RT = (Gg0)�

with matrix G given by:

G =
4

4 + gT g

�
I +

1

2
g�

�

Since matrix G depends on the rotation parameters only, the derivative of matrix R linearly de-
pends on the derivatives of the rotation parameters. When di�erentiating with respect to time, or
linearizing, _g or �g must be respectively used instead of g0. Then the di�erentiation of matrix R

assumes the meaning of angular velocity ! = G _g and of rotation perturbation �� = (G�g) respec-
tively. It is apparent that if parameters g are assumed to be small, matrix G can be approximated
with an identity matrix I , in the spirit of the updated-updated rotation approach.

Appendix B: Simple Constraints

As an example, two basic constraints are outlined. Most of the constraints can be obtained as a
combination of the coincidence and orthogonality conditions here presented.

1. Coincidence. Let xi and pi, i = 1; 2, represent the position of two independent nodes 1; 2
and the o�set from the nodes to the position of the joint, both in the global frame. For sake
of simplicity, the o�sets pi are assumed to be constant in the local frame. The constraint
equation is:

(x2 + p2)� (x1 + p1) = 0

This constraint generates a reacting force f at the coincidence point, which on turn results
in a force at the two nodes, and a couple due to the o�sets:

F = �f M = �pi � f

The di�erentiation of the constraint and of the reactions gives:

(�x2 � p2 � ��2)� (�x1 � p1 � ��1) = � (x2 + p2) + (x1 + p1)

��f = �f � (pi ��f � f � pi � ��i) = �pi � f

where �� refers to the perturbation of rotation, namely G�g.

2. Orthogonality. Let ei, i = 1; 2, represent the unit vectors of some coordinate direction
referred to two independent nodes 1; 2 and expressed in the global frame. The orthogonality
constraint equation is:

eT2 e1 = 0

This constraint generates a reacting couple m that is scalar, and acts in direction e2 � e1:

M = � (e2 � e1)m

The di�erentiation gives:

(e2 � e1)
T
��2 � (e2 � e1)

T
��1 = �e

T

2 e1

�m (e1 � e2 � ��2 � e2 � e1 � ��1)� (e2 � e1)�m = � (e2 � e1)m

By adding 1, 2 and 3 constraints of this kind, universal, plane and prismatic hinges can be
respectively obtained.
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Table 1: List of available elements

Aerodynamic Rigid

Beam

Induced Velocity - Rotor

Dynamic Constraints Beam

Rod

Spring

Hinge

External Force

Couple

General Generic Sensors Dynamics

Swash Plate Controls

Discrete Time Linear Control

User De�ned Element

Inertia Lumped Mass

Kinematic Constraints Clamp

Distance

Spherical Hinge

Universal Hinge

Plane Hinge

In-Plane

Prismatic

Imposed Velocity

Imposed Angular Velocity
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Table 2: Cantilevered blade frequencies, Hz

Mode Exp UMARC NASTRAN MBDyn

4 elem. 2 elem.

1 Beam 12.29 12.3 11.5 11.3 11.7

1 Chord 34.11 34.1 33.4 33.1 32.7

2 Beam 52.44 53.0 56.7 55.8 55.0

1 Tors. 113.35 111.4 127.0 119.0 122.0
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Table 3: Single blade with 
exbeam (locked gimbal), non-rotating, Hz

Mode BELL GVT UMARC MBDyn

10 deg. 50 deg. 10 deg. 10 deg. 10 deg. 50 deg.

Cone 6.6 7.2 6.6 6.3 6.8 7.8

2 F 26.6 35.1 25.2 30.8 28.5 39.0

3 F 68.8 77.3 69.3 77.9 73.5 82.0

1 L 19.3 12.5 20.6 19.3 19.5 12.6

1 T 114.5 109.9 112.6 110.0 109.0 107.0
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Table 4: Full rotor (free gimbal), non-rotating, Hz

Mode GVT MBDyn

10 deg. 10 deg. 50 deg.

Gimbal 2.0 1.8 1.5

Cone 6.8 7.0 7.8

2 Flap 25.0 26.5 36.5

2 Flap asym. 64.2 57.1 55.0

3 Flap 76.2 78.0 82.5

1 Lag 19.7 19.0 12.7

2 Lag 91.3 98.0 92.0

1 Torsion 112.1 109.0 107.5
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Table 5: Rotating frequencies, 888 rpm, �75% = �3 deg, Hz

Mode Myklestad UMARC MBDyn
Gimbal - 14.8 14.8
Cone 17.2 17.3 17.5
1 Lag 22.4 20.8 24.0
Coll Lag 42. 44.0 36.0
2 Flap 37.33 49.6 41.0
2 Flap asym. - 70.2 65.0
3 Flap 75.33 90.3 73.0
Flap/Torsion 89.33 92.7 90.0
Lag/Torsion - 113.4 104.0
Torsion - 116.0 110.0
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Table 6: Rotating frequencies, 742 rpm, �75% = 55 deg, Hz

Mode Myklestad UMARC MBDyn
Gimbal - 12.4 12.6
Cone 14.7 14.9 15.1
1 Lag 15.3 15.8 16.5
2 Flap asym. - 42.3 44.2
Coll Lag 32.7 45.9 46.9
2 Flap 45.3 45.6 49.1
3 Flap asym. - 46.9 60.3
3 Flap 66.0 60.1 65.2
Flap/Torsion 89.3 90.6 97.8
Lag/Torsion 90.0 90.8 89.7
3 Lag - 92.0 92.9
Torsion - 116.0 108.5
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Table 7: Wing frequencies, Hz

Mode downstop GVT NASTRAN MBDyn

Beam on 6.00 6.16 5.9

o� 5.51 5.45 5.4

Chord on 8.45 9.33 9.1

o� 8.45 8.74 8.8

Torsion on 12.5 12.6 12.5

o� 10.6 10.6 11.0

Pylon Yaw on 16.5 18.9 17.2

o� 16.7 16.7 16.6
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Figure 1: WRATS Model at Langley's TDT
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